Lecture 14

Single Interface Reflection and Transmission

Much of the contents of this lecture can be found in Kong, and also the ECE 350X lecture notes. They can be found in many textbooks, even though the notations can be slightly different [29,31,38,47,48,59,71,75,77,78].

14.1 Reflection and Transmission—Single Interface Case

We will derive the reflection coefficients for the single interface case. These reflection coefficients are also called the Fresnel reflection coefficients because they were first derived by Austin-Jean Fresnel (1788-1827). Note that he lived before the completion of Maxwell's equations in 1865. But when Fresnel derived the reflection coefficients in 1823, they were based on the elastic theory of light; and hence, the formulas are not exactly the same as what we are going to derive (see Born and Wolf, Principles of Optics, p. 40 [86]).

The single-interface reflection and transmission problem is homomorphic to the transmission line problem, albeit with complicated mathematics, as we have to keep track of the 3D polarizations of the electromagnetic fields in this case. We shall learn later that the mathematical homomorphism can be used to exploit the simplicity of transmission line theory in seeking the solutions to the multiple interface problems.

14.1.1 TE Polarization (Perpendicular or E Polarization)¹

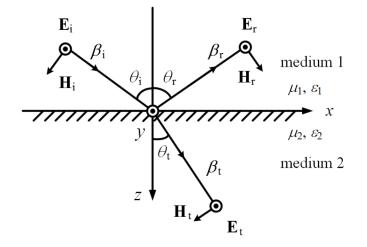


Figure 14.1: A schematic showing the reflection of the TE polarization wave impinging on a dielectric interface.

To set up the above problem, the wave in Region 1 can be written as $\mathbf{E}_i + \mathbf{E}_r$. We assume plane wave polarized in the y direction where the wave vectors are $\boldsymbol{\beta}_i = \hat{x}\beta_{ix} + \hat{z}\beta_{iz}$, $\boldsymbol{\beta}_r = \hat{x}\beta_{rx} - \hat{z}\beta_{rz}$, $\boldsymbol{\beta}_t = \hat{x}\beta_{tx} + \hat{z}\beta_{tz}$, respectively for the incident, reflected, and transmitted waves. Then

$$\mathbf{E}_{i} = \hat{y} E_{0} e^{-j\beta_{i} \cdot \mathbf{r}} = \hat{y} E_{0} e^{-j\beta_{ix}x - j\beta_{iz}z} \tag{14.1.1}$$

and

$$\mathbf{E}_{r} = \hat{y}R^{TE}E_{0}e^{-j\boldsymbol{\beta}_{r}\cdot\mathbf{r}} = \hat{y}R^{TE}E_{0}e^{-j\beta_{rx}x+j\beta_{rz}z}$$
(14.1.2)

In Region 2, we only have transmitted wave; hence

$$\mathbf{E}_t = \hat{y} T^{TE} E_0 e^{-j\beta_t \cdot \mathbf{r}} = \hat{y} T^{TE} E_0 e^{-j\beta_{tx}x - j\beta_{tz}z}$$
(14.1.3)

In the above, the incident wave is known and hence, E_0 is known. From (14.1.2) and (14.1.3), R^{TE} and T^{TE} are unknowns yet to be sought. To find them, we need two boundary conditions to yield two equations.² These are tangential **E** continuous and tangential **H** continuous, which are $\hat{n} \times \mathbf{E}$ continuous and $\hat{n} \times \mathbf{H}$ continuous conditions at the interface.

¹These polarizations are also variously know as the s and p polarizations, a descendent from the notations for acoustic waves where s and p stand for shear and pressure waves respectively.

 $^{^{2}}$ Here, we will treat this problem as a boundary value problem where the unknowns are sought from equations obtained from boundary conditions.

Single Interface Reflection and Transmission

Imposing $\hat{n} \times \mathbf{E}$ continuous at z = 0, we get

$$E_0 e^{-j\beta_{ix}x} + R^{TE} E_0 e^{-j\beta_{rx}x} = T^{TE} E_0 e^{-j\beta_{tx}x}, \quad \forall x$$
(14.1.4)

In order for the above to be valid for all x, it is necessary that $\beta_{ix} = \beta_{rx} = \beta_{tx}$, which is also known as the phase matching condition.³ From the above, by letting $\beta_{ix} = \beta_{rx} = \beta_1 \sin \theta_i = \beta_1 \sin \theta_r$, we obtain that $\theta_r = \theta_i$ or that the law of reflection that the angle of reflection is equal to the angle of incidence. By letting $\beta_{tx} = \beta_2 \sin \theta_t = \beta_{ix} = \beta_1 \sin \theta_i$, we obtain Snell's law that $\beta_1 \sin \theta_i = \beta_2 \sin \theta_t$. (This law of refraction that was also known in the Islamic world in the 900 AD. [87]). Now, canceling common terms on both sides of the equation (14.1.4), the above simplifies to

$$1 + R^{TE} = T^{TE} \tag{14.1.5}$$

To impose $\hat{n} \times \mathbf{H}$ continuous, one needs to find the **H** field using $\nabla \times \mathbf{E} = -j\omega\mu\mathbf{H}$, or that $\mathbf{H} = -j\boldsymbol{\beta} \times \mathbf{E}/(-j\omega\mu) = \boldsymbol{\beta} \times \mathbf{E}/(\omega\mu)$. By so doing

$$\mathbf{H}_{i} = \frac{\boldsymbol{\beta}_{i} \times \mathbf{E}_{i}}{\omega \mu_{1}} = \frac{\boldsymbol{\beta}_{i} \times \hat{y}}{\omega \mu_{1}} E_{0} e^{-j\boldsymbol{\beta}_{i} \cdot \mathbf{r}} = \frac{\hat{z}\beta_{ix} - \hat{x}\beta_{iz}}{\omega \mu_{1}} E_{0} e^{-j\boldsymbol{\beta}_{i} \cdot \mathbf{r}}$$
(14.1.6)

$$\mathbf{H}_{r} = \frac{\boldsymbol{\beta}_{r} \times \mathbf{E}_{r}}{\omega \mu_{1}} = \frac{\boldsymbol{\beta}_{r} \times \hat{y}}{\omega \mu_{1}} R^{TE} E_{0} e^{-j\boldsymbol{\beta}_{r} \cdot \mathbf{r}} = \frac{\hat{z} \beta_{rx} + \hat{x} \beta_{rz}}{\omega \mu_{2}} R^{TE} E_{0} e^{-j\boldsymbol{\beta}_{r} \cdot \mathbf{r}}$$
(14.1.7)

$$\mathbf{H}_{t} = \frac{\boldsymbol{\beta}_{t} \times \mathbf{E}_{t}}{\omega \mu_{2}} = \frac{\boldsymbol{\beta}_{t} \times \hat{y}}{\omega \mu_{2}} T^{TE} E_{0} e^{-j\boldsymbol{\beta}_{t} \cdot \mathbf{r}} = \frac{\hat{z}\beta_{tx} - \hat{x}\beta_{tz}}{\omega \mu_{2}} T^{TE} E_{0} e^{-j\boldsymbol{\beta}_{t} \cdot \mathbf{r}}$$
(14.1.8)

Imposing $\hat{n} \times \mathbf{H}$ continuous or H_x continuous at z = 0, we have

$$\frac{\beta_{iz}}{\omega\mu_1} E_0 e^{-j\beta_{ix}x} - \frac{\beta_{rz}}{\omega\mu_1} R^{TE} E_0 e^{-j\beta_{rx}x} = \frac{\beta_{tz}}{\omega\mu_2} T^{TE} E_0 e^{-j\beta_{tx}x}$$
(14.1.9)

As mentioned before, the phase-matching condition requires that $\beta_{ix} = \beta_{rx} = \beta_{tx}$. The dispersion relation for plane waves requires that

$$\beta_{ix}^2 + \beta_{iz}^2 = \beta_{rx}^2 + \beta_{rz}^2 = \omega^2 \mu_1 \varepsilon_1 = \beta_1^2$$
(14.1.10)

$$\beta_{tx}^2 + \beta_{tz}^2 = \omega^2 \mu_2 \varepsilon_2 = \beta_2^2$$
(14.1.11)

Since $\beta_{ix} = \beta_{rx} = \beta_{tx} = \beta_x$, the above implies that $\beta_{iz} = \beta_{rz} = \beta_{1z}$. Moreover, $\beta_{tz} = \beta_{2z} \neq \beta_{1z}$ usually since $\beta_1 \neq \beta_2$. Then (14.1.9) simplifies to

$$\frac{\beta_{1z}}{\mu_1}(1 - R^{TE}) = \frac{\beta_{2z}}{\mu_2} T^{TE}$$
(14.1.12)

where $\beta_{1z} = \sqrt{\beta_1^2 - \beta_x^2}$, and $\beta_{2z} = \sqrt{\beta_2^2 - \beta_x^2}$.

 $^{^{3}}$ The phase-matching condition can also be proved by taking the Fourier transform of the equation with respect to x. Among the physics community, this is also known as momentum matching, as the wavenumber of a wave is related to the momentum of the particle.

Solving (14.1.5) and (14.1.12) yields

$$R^{TE} = \left(\frac{\beta_{1z}}{\mu_1} - \frac{\beta_{2z}}{\mu_2}\right) \left/ \left(\frac{\beta_{1z}}{\mu_1} + \frac{\beta_{2z}}{\mu_2}\right)$$
(14.1.13)

$$T^{TE} = 2\left(\frac{\beta_{1z}}{\mu_1}\right) \left/ \left(\frac{\beta_{1z}}{\mu_1} + \frac{\beta_{2z}}{\mu_2}\right)$$
(14.1.14)

14.1.2 TM Polarization (Parallel or H Polarization)

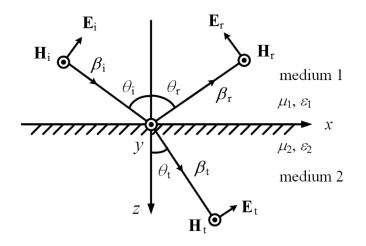


Figure 14.2: A similar schematic showing the reflection of the TM polarization wave impinging on a dielectric interface. The solution to this problem can be easily obtained by invoking duality principle.

The solution to the TM polarization case can be obtained by invoking duality principle where we do the substitution $\mathbf{E} \to \mathbf{H}, \mathbf{H} \to -\mathbf{E}$, and $\mu \rightleftharpoons \varepsilon$ as shown in Figure 14.2. The reflection coefficient for the TM magnetic field is then

$$R^{TM} = \left(\frac{\beta_{1z}}{\varepsilon_1} - \frac{\beta_{2z}}{\varepsilon_2}\right) \left/ \left(\frac{\beta_{1z}}{\varepsilon_1} + \frac{\beta_{2z}}{\varepsilon_2}\right)$$
(14.1.15)

$$T^{TM} = 2\left(\frac{\beta_{1z}}{\varepsilon_1}\right) \left/ \left(\frac{\beta_{1z}}{\varepsilon_1} + \frac{\beta_{2z}}{\varepsilon_2}\right) \right.$$
(14.1.16)

Please remember that R^{TM} and T^{TM} are reflection and transmission coefficients for the magnetic fields, whereas R^{TE} and T^{TE} are those for the electric fields. Some textbooks may define these reflection coefficients based on electric field only, and they will look different, and duality principle cannot be applied.

136

14.2 Interesting Physical Phenomena

Three interesting physical phenomena emerge from the solutions of the single-interface problem. They are total internal reflection, Brewster angle effect, and surface plasmonic resonance. We will look at them next.

14.2.1 Total Internal Reflection

Total internal reflection comes about because of phase matching (also called momentum matching). This phase-matching condition can be illustrated using β -surfaces (same as k-surfaces in some literature), as shown in Figure 14.3. It turns out that because of phase matching, for certain interfaces, β_{2z} becomes pure imaginary.

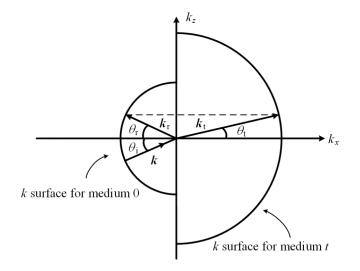


Figure 14.3: Courtesy of J.A. Kong, Electromagnetic Wave Theory [31]. Here, k is synonymous with β . Also, the x axis is equivalent to the z axis in the previous figure.

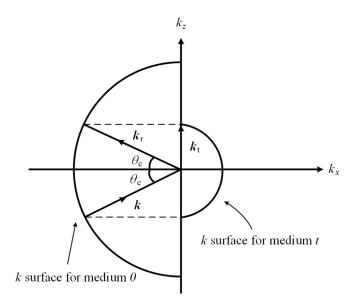


Figure 14.4: Courtesy of J.A. Kong, Electromagnetic Wave Theory. Here, k is synonymous with β , and x axis is the same as our z axis.

As shown in Figures 14.3 and 14.4, because of the dispersion relation that $\beta_{rx}^2 + \beta_{rz}^2 = \beta_{ix}^2 + \beta_{iz}^2 = \beta_1^2$, $\beta_{tx}^2 + \beta_{tz}^2 = \beta_2^2$, they are equations of two circles in 2D whose radii are β_1 and β_2 , respectively. (The tips of the β vectors for Regions 1 and 2 have to be on a spherical surface in the β_x , β_y , and β_z space in the general 3D case, but in this figure, we only show a cross section of the sphere assuming that $\beta_y = 0$.)

Phase matching implies that the x-component of the β vectors are equal to each other as shown. One sees that $\theta_i = \theta_r$ in Figure 14.4, and also as θ_i increases, θ_t increases. For an optically less dense medium where $\beta_2 < \beta_1$, according to the Snell's law of refraction, the transmitted β will refract away from the normal, as seen in the figure. Therefore, eventually the vector β_t becomes parallel to the x axis when $\beta_{ix} = \beta_{rx} = \beta_2 = \omega \sqrt{\mu_2 \varepsilon_2}$ and $\theta_t = \pi/2$. The incident angle at which this happens is termed the critical angle θ_c .

Since $\beta_{ix} = \beta_1 \sin \theta_i = \beta_{rx} = \beta_1 \sin \theta_r = \beta_2$, or

$$\sin \theta_r = \sin \theta_i = \sin \theta_c = \frac{\beta_2}{\beta_1} = \frac{\sqrt{\mu_2 \varepsilon_2}}{\sqrt{\mu_1 \varepsilon_1}} = \frac{n_2}{n_1}$$
(14.2.1)

where n_1 is the reflective index defined as $c_0/v_i = \sqrt{\mu_i \varepsilon_i}/\sqrt{\mu_0 \varepsilon_0}$ where v_i is the phase velocity of the wave in Region *i*. Hence,

$$\theta_c = \sin^{-1}(n_2/n_1) \tag{14.2.2}$$

When $\theta_i > \theta_c$. $\beta_x > \beta_2$ and $\beta_{2z} = \sqrt{\beta_2^2 - \beta_x^2}$ becomes pure imaginary. When β_{2z} becomes pure imaginary, the wave cannot propagate in Region 2, or $\beta_{2z} = -j\alpha_{2z}$, and the

wave becomes evanescent. The reflection coefficient (14.1.13) becomes of the form

$$R^{TE} = (A - jB)/(A + jB)$$
(14.2.3)

It is clear that $|R^{TE}| = 1$ and that $R^{TE} = e^{j\theta_{TE}}$. Therefore, a total internally reflected wave suffers a phase shift. A phase shift in the frequency domain corresponds to a time delay in the time domain. Such a time delay is achieved by the wave traveling laterally in Region 2 before being refracted back to Region 1. Such a lateral shift is called the Goos-Hanschen shift as shown in Figure 14.5 [86]. A wave that travels laterally along the surface of two media is also known as lateral waves [88,89].

Please be reminded that total internal reflection comes about entirely due to the phasematching condition when Region 2 is a faster medium than Region 1. Hence, it will occur with all manner of waves, such as elastic waves, sound waves, seismic waves, quantum waves etc.

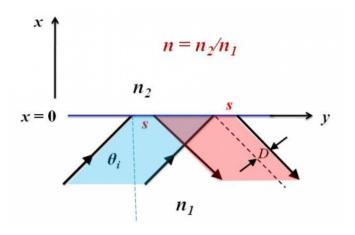


Figure 14.5: Goos-Hanschen Shift. A phase delay is equivalent to a time delay (courtesy of Paul R. Berman (2012), Scholarpedia, 7(3):11584 [90]).

The guidance of a wave in a dielectric slab is due to total internal reflection at the dielectricto-air interface. The wave bounces between the two interfaces of the slab, and creates evanescent waves outside, as shown in Figure 14.6. The guidance of waves in an optical fiber works by similar mechanism of total internal reflection, as shown in Figure 14.7. Due to the tremendous impact the optical fiber has on modern-day communications, Charles Kao, the father of the optical fiber, was awarded the Nobel Prize in 2009. His work was first published in [91].

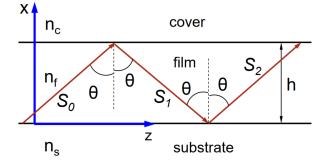


Figure 14.6: Courtesy of E.N. Glytsis, NTUA, Greece [92].

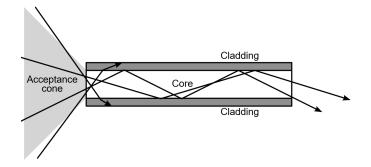


Figure 14.7: Courtesy of Wikepedia [93].

Waveguides have affected international communications for over a hundred year now. Since telegraphy was in place before the full advent of Maxwell's equations, submarine cables for global communications were laid as early as 1850's. Figure 14.8 shows a submarine cable from 1869 using coaxial cable,, and one used in the modern world using optical fiber.

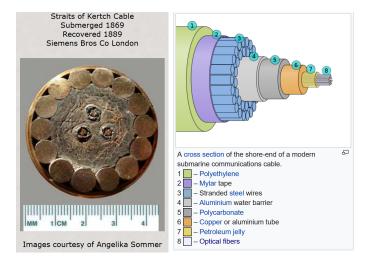


Figure 14.8: The picture of an old 1869 submarine cable made of coaxial cables (left), and modern submarine cable made of optical fibers (right) (courtesy of Atlantic-Cable [94], and Wikipedia [95].

Bibliography

- [1] J. A. Kong, *Theory of electromagnetic waves*. New York, Wiley-Interscience, 1975.
- [2] A. Einstein *et al.*, "On the electrodynamics of moving bodies," Annalen der Physik, vol. 17, no. 891, p. 50, 1905.
- [3] P. A. M. Dirac, "The quantum theory of the emission and absorption of radiation," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 114, no. 767, pp. 243–265, 1927.
- [4] R. J. Glauber, "Coherent and incoherent states of the radiation field," *Physical Review*, vol. 131, no. 6, p. 2766, 1963.
- [5] C.-N. Yang and R. L. Mills, "Conservation of isotopic spin and isotopic gauge invariance," *Physical review*, vol. 96, no. 1, p. 191, 1954.
- [6] G. t'Hooft, 50 years of Yang-Mills theory. World Scientific, 2005.
- [7] C. W. Misner, K. S. Thorne, and J. A. Wheeler, *Gravitation*. Princeton University Press, 2017.
- [8] F. Teixeira and W. C. Chew, "Differential forms, metrics, and the reflectionless absorption of electromagnetic waves," *Journal of Electromagnetic Waves and Applications*, vol. 13, no. 5, pp. 665–686, 1999.
- [9] W. C. Chew, E. Michielssen, J.-M. Jin, and J. Song, Fast and efficient algorithms in computational electromagnetics. Artech House, Inc., 2001.
- [10] A. Volta, "On the electricity excited by the mere contact of conducting substances of different kinds. in a letter from Mr. Alexander Volta, FRS Professor of Natural Philosophy in the University of Pavia, to the Rt. Hon. Sir Joseph Banks, Bart. KBPR S," *Philosophical transactions of the Royal Society of London*, no. 90, pp. 403–431, 1800.
- [11] A.-M. Ampère, Exposé méthodique des phénomènes électro-dynamiques, et des lois de ces phénomènes. Bachelier, 1823.
- [12] —, Mémoire sur la théorie mathématique des phénomènes électro-dynamiques uniquement déduite de l'expérience: dans lequel se trouvent réunis les Mémoires que M. Ampère a communiqués à l'Académie royale des Sciences, dans les séances des 4 et

26 décembre 1820, 10 juin 1822, 22 décembre 1823, 12 septembre et 21 novembre 1825. Bachelier, 1825.

- [13] B. Jones and M. Faraday, *The life and letters of Faraday*. Cambridge University Press, 2010, vol. 2.
- [14] G. Kirchhoff, "Ueber die auflösung der gleichungen, auf welche man bei der untersuchung der linearen vertheilung galvanischer ströme geführt wird," Annalen der Physik, vol. 148, no. 12, pp. 497–508, 1847.
- [15] L. Weinberg, "Kirchhoff's' third and fourth laws'," IRE Transactions on Circuit Theory, vol. 5, no. 1, pp. 8–30, 1958.
- [16] T. Standage, The Victorian Internet: The remarkable story of the telegraph and the nineteenth century's online pioneers. Phoenix, 1998.
- [17] J. C. Maxwell, "A dynamical theory of the electromagnetic field," *Philosophical trans*actions of the Royal Society of London, no. 155, pp. 459–512, 1865.
- [18] H. Hertz, "On the finite velocity of propagation of electromagnetic actions," *Electric Waves*, vol. 110, 1888.
- [19] M. Romer and I. B. Cohen, "Roemer and the first determination of the velocity of light (1676)," Isis, vol. 31, no. 2, pp. 327–379, 1940.
- [20] A. Arons and M. Peppard, "Einstein's proposal of the photon concept-a translation of the Annalen der Physik paper of 1905," *American Journal of Physics*, vol. 33, no. 5, pp. 367–374, 1965.
- [21] A. Pais, "Einstein and the quantum theory," *Reviews of Modern Physics*, vol. 51, no. 4, p. 863, 1979.
- [22] M. Planck, "On the law of distribution of energy in the normal spectrum," Annalen der physik, vol. 4, no. 553, p. 1, 1901.
- [23] Z. Peng, S. De Graaf, J. Tsai, and O. Astafiev, "Tuneable on-demand single-photon source in the microwave range," *Nature communications*, vol. 7, p. 12588, 2016.
- [24] B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, "New approaches to nanofabrication: molding, printing, and other techniques," *Chemical reviews*, vol. 105, no. 4, pp. 1171–1196, 2005.
- [25] J. S. Bell, "The debate on the significance of his contributions to the foundations of quantum mechanics, Bells Theorem and the Foundations of Modern Physics (A. van der Merwe, F. Selleri, and G. Tarozzi, eds.)," 1992.
- [26] D. J. Griffiths and D. F. Schroeter, Introduction to quantum mechanics. Cambridge University Press, 2018.
- [27] C. Pickover, Archimedes to Hawking: Laws of science and the great minds behind them. Oxford University Press, 2008.

- [28] R. Resnick, J. Walker, and D. Halliday, Fundamentals of physics. John Wiley, 1988.
- [29] S. Ramo, J. R. Whinnery, and T. Duzer van, Fields and waves in communication electronics, Third Edition. John Wiley & Sons, Inc., 1995.
- [30] J. L. De Lagrange, "Recherches d'arithmétique," Nouveaux Mémoires de l'Académie de Berlin, 1773.
- [31] J. A. Kong, *Electromagnetic Wave Theory*. EMW Publishing, 2008.
- [32] H. M. Schey, Div, grad, curl, and all that: an informal text on vector calculus. WW Norton New York, 2005.
- [33] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman lectures on physics, Vols. I, II, & III: The new millennium edition. Basic books, 2011, vol. 1,2,3.
- [34] W. C. Chew, Waves and fields in inhomogeneous media. IEEE press, 1995.
- [35] V. J. Katz, "The history of Stokes' theorem," Mathematics Magazine, vol. 52, no. 3, pp. 146–156, 1979.
- [36] W. K. Panofsky and M. Phillips, *Classical electricity and magnetism*. Courier Corporation, 2005.
- [37] T. Lancaster and S. J. Blundell, Quantum field theory for the gifted amateur. OUP Oxford, 2014.
- [38] W. C. Chew, "Fields and waves: Lecture notes for ECE 350 at UIUC," https://engineering.purdue.edu/wcchew/ece350.html, 1990.
- [39] C. M. Bender and S. A. Orszag, Advanced mathematical methods for scientists and engineers I: Asymptotic methods and perturbation theory. Springer Science & Business Media, 2013.
- [40] J. M. Crowley, Fundamentals of applied electrostatics. Krieger Publishing Company, 1986.
- [41] C. Balanis, Advanced Engineering Electromagnetics. Hoboken, NJ, USA: Wiley, 2012.
- [42] J. D. Jackson, *Classical electrodynamics*. John Wiley & Sons, 1999.
- [43] R. Courant and D. Hilbert, Methods of Mathematical Physics: Partial Differential Equations. John Wiley & Sons, 2008.
- [44] L. Esaki and R. Tsu, "Superlattice and negative differential conductivity in semiconductors," *IBM Journal of Research and Development*, vol. 14, no. 1, pp. 61–65, 1970.
- [45] E. Kudeki and D. C. Munson, Analog Signals and Systems. Upper Saddle River, NJ, USA: Pearson Prentice Hall, 2009.
- [46] A. V. Oppenheim and R. W. Schafer, Discrete-time signal processing. Pearson Education, 2014.

- [47] R. F. Harrington, Time-harmonic electromagnetic fields. McGraw-Hill, 1961.
- [48] E. C. Jordan and K. G. Balmain, *Electromagnetic waves and radiating systems*. Prentice-Hall, 1968.
- [49] G. Agarwal, D. Pattanayak, and E. Wolf, "Electromagnetic fields in spatially dispersive media," *Physical Review B*, vol. 10, no. 4, p. 1447, 1974.
- [50] S. L. Chuang, *Physics of photonic devices*. John Wiley & Sons, 2012, vol. 80.
- [51] B. E. Saleh and M. C. Teich, Fundamentals of photonics. John Wiley & Sons, 2019.
- [52] M. Born and E. Wolf, *Principles of optics: electromagnetic theory of propagation, in*terference and diffraction of light. Elsevier, 2013.
- [53] R. W. Boyd, Nonlinear optics. Elsevier, 2003.
- [54] Y.-R. Shen, The principles of nonlinear optics. New York, Wiley-Interscience, 1984.
- [55] N. Bloembergen, Nonlinear optics. World Scientific, 1996.
- [56] P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of electric machinery. McGraw-Hill New York, 1986.
- [57] A. E. Fitzgerald, C. Kingsley, S. D. Umans, and B. James, *Electric machinery*. McGraw-Hill New York, 2003, vol. 5.
- [58] M. A. Brown and R. C. Semelka, MRI.: Basic Principles and Applications. John Wiley & Sons, 2011.
- [59] C. A. Balanis, Advanced engineering electromagnetics. John Wiley & Sons, 1999.
- [60] Wikipedia, "Lorentz force," https://en.wikipedia.org/wiki/Lorentz_force/, accessed: 2019-09-06.
- [61] R. O. Dendy, Plasma physics: an introductory course. Cambridge University Press, 1995.
- [62] P. Sen and W. C. Chew, "The frequency dependent dielectric and conductivity response of sedimentary rocks," *Journal of microwave power*, vol. 18, no. 1, pp. 95–105, 1983.
- [63] D. A. Miller, Quantum Mechanics for Scientists and Engineers. Cambridge, UK: Cambridge University Press, 2008.
- [64] W. C. Chew, "Quantum mechanics made simple: Lecture notes for ECE 487 at UIUC," http://wcchew.ece.illinois.edu/chew/course/QMAll20161206.pdf, 2016.
- [65] B. G. Streetman and S. Banerjee, *Solid state electronic devices*. Prentice hall Englewood Cliffs, NJ, 1995.

- [66] Smithsonian, "This 1600-year-old goblet shows that the romans were nanotechnology pioneers," https://www.smithsonianmag.com/history/ this-1600-year-old-goblet-shows-that-the-romans-were-nanotechnology-pioneers-787224/, accessed: 2019-09-06.
- [67] K. G. Budden, Radio waves in the ionosphere. Cambridge University Press, 2009.
- [68] R. Fitzpatrick, Plasma physics: an introduction. CRC Press, 2014.
- [69] G. Strang, Introduction to linear algebra. Wellesley-Cambridge Press Wellesley, MA, 1993, vol. 3.
- [70] K. C. Yeh and C.-H. Liu, "Radio wave scintillations in the ionosphere," Proceedings of the IEEE, vol. 70, no. 4, pp. 324–360, 1982.
- [71] J. Kraus, *Electromagnetics*. McGraw-Hill, 1984.
- [72] Wikipedia, "Circular polarization," https://en.wikipedia.org/wiki/Circular_polarization.
- [73] Q. Zhan, "Cylindrical vector beams: from mathematical concepts to applications," Advances in Optics and Photonics, vol. 1, no. 1, pp. 1–57, 2009.
- [74] H. Haus, Electromagnetic Noise and Quantum Optical Measurements, ser. Advanced Texts in Physics. Springer Berlin Heidelberg, 2000.
- [75] W. C. Chew, "Lectures on theory of microwave and optical waveguides, for ECE 531 at UIUC," https://engineering.purdue.edu/wcchew/course/tgwAll20160215.pdf, 2016.
- [76] L. Brillouin, Wave propagation and group velocity. Academic Press, 1960.
- [77] R. Plonsey and R. E. Collin, Principles and applications of electromagnetic fields. McGraw-Hill, 1961.
- [78] M. N. Sadiku, *Elements of electromagnetics*. Oxford University Press, 2014.
- [79] A. Wadhwa, A. L. Dal, and N. Malhotra, "Transmission media," https://www. slideshare.net/abhishekwadhwa786/transmission-media-9416228.
- [80] P. H. Smith, "Transmission line calculator," *Electronics*, vol. 12, no. 1, pp. 29–31, 1939.
- [81] F. B. Hildebrand, Advanced calculus for applications. Prentice-Hall, 1962.
- [82] J. Schutt-Aine, "Experiment02-coaxial transmission line measurement using slotted line," http://emlab.uiuc.edu/ece451/ECE451Lab02.pdf.
- [83] D. M. Pozar, E. J. K. Knapp, and J. B. Mead, "ECE 584 microwave engineering laboratory notebook," http://www.ecs.umass.edu/ece/ece584/ECE584_lab_manual.pdf, 2004.
- [84] R. E. Collin, Field theory of guided waves. McGraw-Hill, 1960.

- [85] Q. S. Liu, S. Sun, and W. C. Chew, "A potential-based integral equation method for low-frequency electromagnetic problems," *IEEE Transactions on Antennas and Propagation*, vol. 66, no. 3, pp. 1413–1426, 2018.
- [86] M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Pergamon, 1986, first edition 1959.
- [87] Wikipedia, "Snell's law," https://en.wikipedia.org/wiki/Snell's_law.
- [88] G. Tyras, Radiation and propagation of electromagnetic waves. Academic Press, 1969.
- [89] L. Brekhovskikh, Waves in layered media. Academic Press, 1980.
- [90] Scholarpedia, "Goos-hanchen effect," http://www.scholarpedia.org/article/ Goos-Hanchen_effect.
- [91] K. Kao and G. A. Hockham, "Dielectric-fibre surface waveguides for optical frequencies," in *Proceedings of the Institution of Electrical Engineers*, vol. 113, no. 7. IET, 1966, pp. 1151–1158.
- [92] E. Glytsis, "Slab waveguide fundamentals," http://users.ntua.gr/eglytsis/IO/Slab_ Waveguides_p.pdf, 2018.
- [93] Wikipedia, "Optical fiber," https://en.wikipedia.org/wiki/Optical_fiber.
- [94] Atlantic Cable, "1869 indo-european cable," https://atlantic-cable.com/Cables/ 1869IndoEur/index.htm.
- [95] Wikipedia, "Submarine communications cable," https://en.wikipedia.org/wiki/ Submarine_communications_cable.
- [96] D. Brewster, "On the laws which regulate the polarisation of light by reflexion from transparent bodies," *Philosophical Transactions of the Royal Society of London*, vol. 105, pp. 125–159, 1815.
- [97] Wikipedia, "Brewster's angle," https://en.wikipedia.org/wiki/Brewster's_angle.
- [98] H. Raether, "Surface plasmons on smooth surfaces," in Surface plasmons on smooth and rough surfaces and on gratings. Springer, 1988, pp. 4–39.
- [99] E. Kretschmann and H. Raether, "Radiative decay of non radiative surface plasmons excited by light," *Zeitschrift für Naturforschung A*, vol. 23, no. 12, pp. 2135–2136, 1968.
- [100] Wikipedia, "Surface plasmon," https://en.wikipedia.org/wiki/Surface_plasmon.
- [101] Wikimedia, "Gaussian wave packet," https://commons.wikimedia.org/wiki/File: Gaussian_wave_packet.svg.
- [102] Wikipedia, "Charles K. Kao," https://en.wikipedia.org/wiki/Charles_K._Kao.
- [103] H. B. Callen and T. A. Welton, "Irreversibility and generalized noise," *Physical Review*, vol. 83, no. 1, p. 34, 1951.

- [104] R. Kubo, "The fluctuation-dissipation theorem," Reports on progress in physics, vol. 29, no. 1, p. 255, 1966.
- [105] C. Lee, S. Lee, and S. Chuang, "Plot of modal field distribution in rectangular and circular waveguides," *IEEE transactions on microwave theory and techniques*, vol. 33, no. 3, pp. 271–274, 1985.
- [106] W. C. Chew, Waves and Fields in Inhomogeneous Media. IEEE Press, 1996.
- [107] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Courier Corporation, 1965, vol. 55.
- [108] "Handbook of mathematical functions: with formulas, graphs, and mathematical tables."